
Mathematical Toolkit Spring 2023

Lecture 13: May 3, 2023
Lecturer: Avrim Blum

1 A small extension of Chernoff-Hoeffding bounds

One of the results we proved in the previous lecture is that if X = X1 + . . . + Xn where the
Xi are independent Bernoulli(pi) random variables and µ = E[X] = ∑i pi, then for any
δ ∈ [0, 1] we have:

P[X ≥ (1 + δ)µ] ≤ e−δ2µ/3.

In some cases (like the one we will discuss below) we will have an upper bound B on µ
(i.e., µ ≤ B) and we would like to say that

P[X ≥ (1 + δ)B] ≤ e−δ2B/3.

This indeed is legitimate, for the following reason. Define p′1, . . . , p′n ∈ [0, 1] such that
p′i ≥ pi for all i and ∑i p′i = B. (It is easy to see this is possible for any B ∈ [µ, n]; if
B > n then the event in question cannot happen, so the desired inequality is trivially true).
Now, define Bernoulli random variables X′1, . . . , X′n as follows: if Xi = 1 then X′i = 1; else if

Xi = 0 then X′i = 1 with probability p′i−pi
1−pi

and X′i = 0 otherwise. It is not hard to see that X′i
is a Bernoulli(p′i) random variable, and X′1, . . . , X′n are mutually independent. Therefore,
defining X′ = X′1 + . . . + X′n, by Chernoff-Hoeffding bounds we have:

P[X′ ≥ (1 + δ)B] ≤ e−δ2B/3.

But, notice that X′ ≥ X always. Therefore, we can replace X′ with X in the above inequality
as desired. Note that the same trick can be used for the general version of the Chernoff-
Hoeffding bounds as well.

2 Low-congestion routing

Given a directed graph G and a set of pairs of vertices {(si, ti)}, suppose we want to route
these pairs to minimize the maximum congestion. That is, we want to find paths from each

1

si to its corresponding ti such that no edge is used by more than C paths, for C as small as
possible. This problem is NP-hard. Can we find an approximate solution?

Here is an idea: (by Raghavan & Thompson)

1. Solve the problem fractionally. Think of this as multi-commodity flow where we
want to have one unit of flow of commodity i from si to ti (e.g., allow si to route to
ti by sending 1/2 down one path, 1/4 down another path, and 1/4 down another).
We can solve this with linear programming: for each (directed) edge (u, v), and each
commodity i, we have a variable xi,(u,v). For each commodity i we have constraints
that one unit of commodity i flows out of si, one unit of commodity i flows into
ti, and that the inflow of commodity i equals the outflow of commodity i for each
vertex v 6∈ {si, ti}. That is, ∑v xi,(si ,v) = 1, ∑u xi,(u,ti) = 1, and for all v 6∈ {si, ti} we
have ∑u xi,(u,v) = ∑u′ xi,(v,u′). Then for each edge (u, v) we add the constraint that
∑i xi,(u,v) ≤ C, and minimize C.

2. Now, for each pair (si, ti) we have a flow of one unit of commodity i. What we next
do is view these fractional values xi,(u,v) as probabilities and select a path from si to
ti such that the probability we pick edge (u, v) is equal to the flow of this commodity
on (u, v). How can we do this algorithmically? The claim is that a greedy approach
will work: starting from si, examine all outgoing edges and select one (si, v1) with
probability proportional to the flow of commodity i on that edge; then repeat from
the vertex v1, and so on, continuing until ti is reached.

Claim 2.1 The greedy approach in step 2 above selects a path from si to ti such that each edge (u, v)
is selected with probability xi,(u,v).

Proof: First, the flow of commodity i from si to ti is a DAG (any cycles can be deleted),
so we can sort the vertices of G that have flow of commodity i through them such that all
edges (u, v) with xi,(u,v) > 0 point forward in this ordering. Now, consider the vertices in
this order. We will argue by induction.Base case: the first vertex is si itself, and all edges
(si, v) are selected with probability equal to xi,(si ,v) by construction. General case: consider
now some arbitrary vertex v 6= ti in this ordering and assume inductively that each incom-
ing edge (u, v) is selected with probability xi,(u,v). Since these events are disjoint (a path
in a DAG cannot contain more than one edge into any given vertex), this means that v is
reached with probability = ∑u xi,(u,v). Conditioned on v being reached, each outgoing edge
(v, w) is selected with probability xi,(v,w)/ ∑u′ xi,(v,u′). But since ∑u xi,(u,v) = ∑u′ xi,(v,u′), this
implies the overall probability that (v, w) is selected (namely, the probability v is reached
times the probability (v, w) is selected conditioned on v being reached) is exactly xi,(v,w) as
desired.

2

We now use Claim 2.1 together with Chernoff-Hoeffding bounds and the union bound
to prove that the solution found will with high probability be not too much worse than
optimal. Specifically, define opt to be the optimal value for the congestion minimization
problem. We then have:

Claim 2.2 If opt� log n (i.e., opt = ω(log n)) then with high probability this algorithm will find
a solution with maximum congestion at most (1 + o(1))opt. For any value of opt, this algorithm
will with high probability find a solution that is within an O(log n

loglogn) factor of opt.

Proof: Fix some edge (u, v) and let Xi,(u,v) be the indicator random variable for the event
that we picked (u, v) as an edge when selecting a path for routing commodity i. By Claim
2.1, we have E[Xi,(u,v)] = xi,(u,v). Notice that while for a given commodity i, the associated
random variables are highly dependent across edges, for a given edge (u, v) the associated
random variables across commodities are completely independent. Moreover, if we define
X(u,v) = ∑i Xi,(u,v), we have E[X(u,v)] ≤ C, where C is the quantity minimized in the linear
program (the maximum congestion in the optimal fractional solution). Note also that since
the linear program is a relaxation of the path-routing problem, we have C ≤ opt.

We can now apply Chernoff-Hoeffding bounds. Consider first the case that opt � log n.
Using the extended version of the bounds from Section 1 and the fact that E[X(u,v)] ≤ opt,
we have:

P[X(u,v) > (1 + δ)opt] ≤ e−δ2opt/3.

Since opt � log n, for any constant δ > 0 the quantity on the right-hand-side is o(1/n2).
So, by the union bound over all edges, the probability that there exists an edge whose
congestion exceeds this bound is also small (o(1)).

What if opt = 1, or opt is constant? In this case, we can apply the bound:

P[X(u,v) > k opt] <

(
ek−1

kk

)opt

≤ ek−1

kk .

So, set k to be 3 ln n
ln ln n , and we again get a probability bound that is o(1/n2) as desired.

3 Randomized complexity classes

You have probably seen the class P, which refers to the class of problems that have polynomial-
time deterministic algorithms. Here, we will look at randomized analogs of P. First, for-
mally all of these classes refer to decision problems: problems whose answer is YES or NO.
E.g., “Does the given graph have a perfect matching?” For such problems, we can split all
possible instances into two categories: YES-instances (whose correct answer is YES) and

3

NO-instances (whose correct answer is NO). We can also put any ill-formed instances into
the NO category.

Definition 3.1 We say that an algorithm runs in Polynomial Time if, for some constant c, its
running time is O(nc), where n is the size of the input.

Definition 3.2 P is the set of decision problems solvable by a deterministic polynomial-time algo-
rithm.

To define randomized complexity classes we will consider algorithms A that take in two
inputs: an instance I of the problem being solved, and an auxiliary input y (a bit string)
whose length is polynomial in the size of the instance I. Think of y as the random bits used
by the algorithm. We can then define randomized complexity classes as follows:

Definition 3.3 A problem Q is in RP if there exists a polynomial-time algorithm A(I, y) and a
polynomial r (the number of random bits requested) such that:

• If I is a YES-instance, then

P
y∈{0,1}r(|I|)

[A(I, y) = YES] ≥ 1/2.

• If I is a NO-instance, then

P
y∈{0,1}r(|I|)

[A(I, y) = YES] = 0.

The class RP corresponds to problems solvable by randomized algorithms with 1-sided
error. For example, we showed that the perfect matching problem belongs to RP because
we gave an algorithm such that if the given graph G has a perfect matching, then there is
at least a 1/2 chance our algorithm says YES (because the Tutte polynomial is nonzero),
whereas if G has no perfect matching, then our algorithm is guaranteed to say NO (because
the Tutte polynomial is identically zero). Note that the specific value “1/2” is arbitrary —
any constant greater than 0 would give the same class (do you see why?).

There is also the complexity class BPP which corresponds to randomized algorithms with
2-sided error:

Definition 3.4 A problem Q is in BPP if there exists a polynomial-time algorithm A(I, y) and a
polynomial r (the number of random bits requested) such that:

• If I is a YES-instance, then

P
y∈{0,1}r(|I|)

[A(I, y) = YES] ≥ 3/4.

4

• If I is a NO-instance, then

P
y∈{0,1}r(|I|)

[A(I, y) = YES] ≤ 1/4.

Again, the specific constants 3/4 and 1/4 are arbitrary: any two constants with one larger
than the other would give the same class (can you see why?).

It is believed that P = BPP, though there is no deterministic polynomial-time algorithm
known for the polynomial identity testing problem.

One more complexity class to mention is P/poly. This is the class of problems solvable in
“non-uniform polynomial time”.

Definition 3.5 A problem Q is in P/poly if there exists a polynomial-time algorithm A(I, y) and
a polynomial r such that for every n = |I| there exists a string yn ∈ {0, 1}r(n) such that A(I, y|I|)
is always correct.

You can think of yn is an “advice” string used for instances of size n. Note that because yn
has length polynomial in n, it can’t just be a list of the answers for all instances I of size n
(because there could be up to 2n such instances). One interesting fact is that RP ⊆ P/poly:

Theorem 3.6 RP ⊆ P/poly.

Proof: Suppose Q ∈ RP. Then there exists an algorithm A and polynomial r satisfying
the conditions of the RP definition. Consider an algorithm A′ that given an instance I
of size n uses an auxiliary random input yn of length (n + 1)r(n) to peform n + 1 runs
of A, outputting YES if any of the runs outputs YES and outputting NO otherwise. The
probability that A′ fails on a given instance I of size n is at most 1/2n+1. Since there are at
most 2n instances I of size n, by the union bound, the chance for a random yn that there
exists an instance I of size n for which A′(I, yn) fails is at most 2n/2n+1 = 1/2. Therefore,
a string yn causing A′ to succeed on all instances of size n must exist.

5

	A small extension of Chernoff-Hoeffding bounds
	Low-congestion routing
	Randomized complexity classes

